HYGROSCOPIC MATERIAL
(lye).
Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance's molecules, adsorbing substances can become physically changed, e.g. changing in volume, boiling point, viscosity, or some other physical characteristic or property of the substance.
https://www.youtube.com/watch?v=srfsz9UsXSQ
https://www.youtube.com/watch?v=RFcbJ15EqEM
The word hygroscopy (/haɪˈɡrɒskəpi/) uses combining forms of hygro- and -scopy. Unlike any other -scopy word, it no longer refers to a viewing or imaging mode. It did begin that way, with the word hygroscope referring in the 1790s to measuring devices for humidity level. These hygroscopes used materials, such as certain animal hairs, that appreciably changed shape and size when they became damp. Such materials were then said to be hygroscopic because they were suitable for making a hygroscope. Eventually, though, the word hygroscope ceased to be used for any such instrument in modern usage. But the word hygroscopic (tending to retain moisture) lived on, and thus also hygroscopy (the ability to do so). Nowadays an instrument for measuring humidity is called a hygrometer (hygro- + -meter).
Hygroscopic substances include cellulose fibers (such as cotton and paper), sugar, caramel, honey, glycerol, ethanol, wood, methanol, sulfuric acid, many fertilizer chemicals, many salts (like calcium chloride, bases like sodium hydroxide etc.), and a wide variety of other substances.[1]
If a compound dissolves in water, then it is considered to be hydrophilic.[2]
Zinc chloride and calcium chloride, as well as potassium hydroxide and sodium hydroxide (and many different salts), are so hygroscopic that they readily dissolve in the water they absorb: this property is called deliquescence. Not only is sulfuric acid hygroscopic in concentrated form but its solutions are hygroscopic down to concentrations of 10% v/v or below. A hygroscopic material will tend to become damp and cakey when exposed to moist air (such as the salt inside salt shakers during humid weather).
Because of their affinity for atmospheric moisture, hygroscopic materials might require storage in sealed containers. When added to foods or other materials for the express purpose of maintaining moisture content, such substances are known as humectants.
Materials and compounds exhibit different hygroscopic properties, and this difference can lead to detrimental effects, such as stress concentration in composite materials. The volume of a particular material or compound is affected by ambient moisture and may be considered its coefficient of hygroscopic expansion (CHE) (also referred to as CME, or coefficient of moisture expansion) or coefficient of hygroscopic contraction (CHC)—the difference between the two terms being a difference in sign convention.
Differences in hygroscopy can be observed in plastic-laminated paperback book covers—often, in a suddenly moist environment, the book cover will curl away from the rest of the book. The unlaminated side of the cover absorbs more moisture than the laminated side and increases in area, causing a stress that curls the cover toward the laminated side. This is similar to the function of a thermostat's bi-metallic strip. Inexpensive dial-type hygrometers make use of this principle using a coiled strip. Deliquescence is the process by which a substance absorbs moisture from the atmosphere until it dissolves in the absorbed water and forms a solution. Deliquescence occurs when the vapour pressure of the solution that is formed is less than the partial pressure of water vapour in the air.
While some similar forces are at work here, it is different from capillary attraction, a process where glass or other solid substances attract water, but are not changed in the process (e.g., water molecules do not become suspended between the glass molecules).
Comments
Post a Comment